NSRL Fault Studies

- Goals
- Layout
- Fault Studies
- Results
- Conclusions

Fault Study Goals

- ❖ Determine whether design provides adequate radiation protection for routine operation.
- ❖ Determine whether design provides adequate radiation protection to personnel during various faults.
- ❖ Determine whether the choice of monitor locations is optimum.
- ❖ Determine whether the monitors can be used to limit highintensity protons delivery into NSRL.

Fault Conditions, protons

- ❖ 2 GeV, 6x10¹⁰/5.4 sec
 - 1. D6 Septum Magnet.
 - 2. Gate Valve in the Stub Tunnel at the Head Wall.
 - 3. RD1/RD2 Magnet (20° bend)
 - 4. Beam Pipe near the berm penetration
 - 5. Gate Valve past the berm penetration
 - 6. Thick Target in the target room
 - 7. Beam Dump (Routine Operation)
- Surveyed the berm, the fence, building 957 at the penetration, labyrinth entrances.

NSRL Layout

Results

- The only dose observable with the hand-held instruments occurred in building 957 at the penetration, during the beam-pipe fault: 0.2 mrem/hour.
- Other measurements were made with the fixed monitors (chipmunks).

Trip Rates (2 GeV protons)

	D1/D2	Beam Pipe	Gate Valve	Thick Target	Beam Dump
NM130		1			1
NM131			4 X 10 ¹¹ /s	3.8 X 10 ¹¹ / s	5 X 10 ¹¹ /s
NM132	8.8 X 10 ¹⁰ /	1.8 X 10 ¹¹ / _S		V	4 X 10 ¹² /s

Rates During High Intensity Fault (3.7 GeV protons at 10¹⁴/s)

	D1/D2	Beam Pipe	Gate Valve	Thick Target	Beam Dump
NM130				5.0 rem/h*	5.0 rem/h*
NM131			1.0 rem/h	11.4 rem/h	2.5 rem/h
NM132	5.2 rem/h	2.5 rem/h	63 mrem/h	63 mrem/h	63 mrem/h

^{*} Estimated, not measured

Dose During 5 second High Intensity Fault

	D1/D2	Beam Pipe	Gate Valve	Thick Target	Beam Dump
Upstream Labyrinth	7.2 mrem	3.5 mrem	0.1 mrem	0.1 mrem	0.1 mrem
Building 957		1.18 mrem			
Fence	1.6* mrem	1.6* mrem	1.6* mrem	1.6* mrem	1.6* mrem
Berm	25.7* mrem	25.7* mrem	25.7* mrem	25.7* mrem	25.7* mrem
Downstream Labyrinth	<0.8 mrem	<0.8 mrem	0.8 mrem	15.8 mrem	0.05 mrem

Conclusions

- Design appears to be adequate for routine operation.
- Protection under fault conditions is adequate.
- * Chipmunks NM131 and NM132 in appropriate locations, and are set to appropriate trip levels. They will interlock at reasonable levels and will prevent multiple-spill high intensity faults in NSRL.
- * Chipmunk NM130 will move to a location above midtunnel.